Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1980, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438367

ABSTRACT

The sterile insect technique is based on the overflooding of a target population with released sterile males inducing sterility in the wild female population. It has proven to be effective against several insect pest species of agricultural and veterinary importance and is under development for Aedes mosquitoes. Here, we show that the release of sterile males at high sterile male to wild female ratios may also impact the target female population through mating harassment. Under laboratory conditions, male to female ratios above 50 to 1 reduce the longevity of female Aedes mosquitoes by reducing their feeding success. Under controlled conditions, blood uptake of females from an artificial host or from a mouse and biting rates on humans are also reduced. Finally, in a field trial conducted in a 1.17 ha area in China, the female biting rate is reduced by 80%, concurrent to a reduction of female mosquito density of 40% due to the swarming of males around humans attempting to mate with the female mosquitoes. This suggests that the sterile insect technique does not only suppress mosquito vector populations through the induction of sterility, but may also reduce disease transmission due to increased female mortality and lower host contact.


Subject(s)
Aedes , Infertility, Male , Humans , Female , Male , Animals , Mice , Reproduction , Cell Communication , Insecta
2.
Chin J Nat Med ; 22(2): 137-145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38342566

ABSTRACT

Excessive oxidative stress impairs cartilage matrix metabolism balance, significantly contributing to osteoarthritis (OA) development. Celastrol (CSL), a drug derived from Tripterygium wilfordii, has recognized applications in the treatment of cancer and immune system disorders, yet its antioxidative stress mechanisms in OA remain underexplored. This study aimed to substantiate CSL's chondroprotective effects and unravel its underlying mechanisms. We investigated CSL's impact on chondrocytes under both normal and inflammatory conditions. In vitro, CSL mitigated interleukin (IL)-1ß-induced activation of proteinases and promoted cartilage extracellular matrix (ECM) synthesis. In vivo, intra-articular injection of CSL ameliorated cartilage degeneration and mitigated subchondral bone lesions in OA mice. Mechanistically, it was found that inhibiting nuclear factor erythroid 2-related factor 2 (NRF2) abrogated CSL-mediated antioxidative functions and exacerbated the progression of OA. This study is the first to elucidate the role of CSL in the treatment of OA through the activation of NRF2, offering a novel therapeutic avenue for arthritis therapy.


Subject(s)
NF-E2-Related Factor 2 , Osteoarthritis , Mice , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/metabolism , Chondrocytes , Interleukin-1beta
3.
Stud Health Technol Inform ; 308: 351-358, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38007759

ABSTRACT

In eukaryotic cells, vesicular transport plays a crucial role in the docking and fusion of secretory vesicles with their respective target membranes. This intricate process is dependent on a complex network of multiple molecules. One of the important processes is tethering. The exocyst complex facilitates the tethering of secretory vesicles to the plasma membrane during exocytosis. The Sec6 subunit in yeast interacts with other exocyst subunits and may regulate SNARE assembly, which is crucial for understanding the assembly mechanism of exocyst and its interaction with SNARE. In this study, we designed two truncated forms of HuSec6, HuSec6 121-734 and HuSec6 121-745, based on results of bioinformatics analysis. We expressed and purified the proteins in E. coli, obtaining a protein purity of over 95% and protein crystals. X-ray diffraction results showed a resolution of approximately 9 Å for the crystals, providing a solid foundation for the crystal structure analysis of HuSec6.


Subject(s)
Escherichia coli , Vesicular Transport Proteins , Humans , Escherichia coli/metabolism , Exocytosis/physiology , Saccharomyces cerevisiae/metabolism , SNARE Proteins/metabolism , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism
4.
Protein Expr Purif ; 212: 106351, 2023 12.
Article in English | MEDLINE | ID: mdl-37574178

ABSTRACT

Vesicle trafficking is a fundamental cellular process that ensures proper material exchange between organelles in eukaryotic cells, and multisubunit tethering complexes (MTCs) are essential in this process. The heterohexameric homotypic fusion and protein sorting (HOPS) complex, which functions in the endolysosomal pathway, is a member of MTCs. Despite its critical role, the complex composition and low-expression level of HOPS have made its expression and purification extremely challenging. In this study, we present a highly efficient strategy for overexpressing and purifying HOPS from Saccharomyces cerevisiae. We achieved HOPS overexpression by integrating a strong promoter TEF1 before each subunit using the gRNA-tRNA array for CRISPR-Cas9 (GTR-CRISPR) system. The HOPS complex was subsequently purified using Staphylococcus aureus protein A (ProtA) affinity purification and size-exclusion chromatography, resulting in high purity and homogeneity. We obtained two-fold more HOPS using this method than that obtained using the commonly used GAL1 promoter-controlled HOPS overexpression. Negative staining electron microscopy analysis confirmed the correct assembly of HOPS. Notably, we also successfully purified two other MTCs, class C core vacuole/endosome tethering (CORVET) and Golgi-associated retrograde protein (GARP) using this approach. Our findings facilitate further in vitro biochemical characterization and functional studies of MTCs and provide a useful guide for the preparation of other heterogenic multisubunit complexes.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Endosomes/genetics , Endosomes/metabolism , Protein Transport , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
Trop Med Infect Dis ; 7(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36548686

ABSTRACT

The geographic boundaries of arboviruses continue to expand, posing a major health threat to millions of people around the world. This expansion is related to the availability of effective vectors and suitable habitats. Armigeres subalbatus (Coquillett, 1898), a common and neglected species, is of increasing interest given its potential vector capacity for Zika virus. However, potential distribution patterns and the underlying driving factors of Ar. subalbatus remain unknown. In the current study, detailed maps of their potential distributions were developed under both the current as well as future climate change scenarios (SSP126 and SSP585) based on CMIP6 data, employing the MaxEnt model. The results showed that the distribution of the Ar. subalbatus was mainly affected by temperature. Mean diurnal range was the strongest predictor in shaping the distribution of Ar. subalbatus, with an 85.2% contribution rate. By the 2050s and 2070s, Ar. subalbatus will have a broader potential distribution across China. There are two suitable expansion types under climate change in the 2050s and 2070s. The first type is continuous distribution expansion, and the second type is sporadic distribution expansion. Our comprehensive analysis of Ar. subalbatus's suitable distribution areas shifts under climate change and provides useful and insightful information for developing management strategies for future arboviruses.

6.
Microbiol Spectr ; 10(5): e0263321, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35894613

ABSTRACT

Wolbachia is being developed as a biological tool to suppress mosquito populations and/or interfere with their transmitted viruses. Adult males with an artificial Wolbachia infection have been released, successfully yielding population suppression in multiple field trials. The main characteristic of the artificial Wolbachia-infected mosquitoes used in the suppression program is the lower vector competence than that in native infected/uninfected mosquitoes in horizontal and vertical transmission. Our previous studies have demonstrated that the Aedes albopictus HC line infected with a trio of Wolbachia strains exhibited almost complete blockade of dengue virus (DENV) and Zika virus (ZIKV) in horizontal and vertical transmission. However, the extent to which Wolbachia inhibits virus transovarial transmission is unknown since no studies have been performed to determine whether Wolbachia protects ovarian cells against viral infection. Here, we employed ovarian cells of the Ae. albopictus GUA (a wild-type mosquito line superinfected with two native Wolbachia strains, wAlbA and wAlbB), HC, and GT lines (tetracycline-cured, Wolbachia-uninfected mosquitoes), which exhibit key traits, and compared them to better understand how Wolbachia inhibits ZIKV transovarial transmission. Our results showed that the infection rate of adult GT progeny was significantly higher than that of GUA progeny during the first and second gonotrophic cycles. In contrast, the infection rates of adult GT and GUA progeny were not significantly different during the third gonotrophic cycle. All examined adult HC progeny from three gonotrophic cycles were negative for ZIKV infection. A strong negative linear correlation existed between Wolbachia density and ZIKV load in the ovaries of mosquitoes. Although there is no obvious coexistence area in the ovaries for Wolbachia and ZIKV, host immune responses may play a role in Wolbachia blocking ZIKV expansion and maintenance in the ovaries of Ae. albopictus. These results will aid in understanding Wolbachia-ZIKV interactions in mosquitoes. IMPORTANCE Area-wide application of Wolbachia to suppress mosquito populations and their transmitted viruses has achieved success in multiple countries. However, the mass release of Wolbachia-infected male mosquitoes involves a potential risk of accidentally releasing fertile females. In this study, we employed ovarian cells of the Ae. albopictus GUA, HC, and GT lines, which exhibit key traits, and compared them to better understand how Wolbachia inhibits ZIKV transovarial transmission. Our results showed an almost complete blockade of ZIKV transmission in HC female mosquitoes. Wolbachia in natively infected GUA mosquitoes negative affected ZIKV, and this interference was shown by slightly lower loads than those in HC mosquitoes. Overall, our work helps show how Wolbachia blocks ZIKV expansion and maintenance in the ovaries of Ae. albopictus and aids in understanding Wolbachia-ZIKV interactions in mosquitoes.


Subject(s)
Aedes , Wolbachia , Zika Virus Infection , Zika Virus , Animals , Male , Female , Wolbachia/physiology , Zika Virus Infection/prevention & control , Mosquito Vectors/physiology , Tetracyclines
7.
Insects ; 13(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35735869

ABSTRACT

The sterile insect technique (SIT) and its related technologies are considered to be a powerful weapon for fighting against mosquitoes. As an important part of the area-wide integrated pest management (AW-IPM) programs, SIT can help reduce the use of chemical pesticides for mosquito control, and consequently, the occurrence of insecticide resistance. The mosquito SIT involves several important steps, including mass rearing, sex separation, irradiation, packing, transportation, release and monitoring. To enable the application of SIT against mosquitoes to reduce vector populations, the Joint Food and Agriculture Organization of the United Nations (FAO) and the International Atomic Energy Agency (IAEA) Centre (previously called Division) of Nuclear Techniques in Food and Agriculture (hereinafter called Joint FAO/IAEA Centre) and its Insects Pest Control sub-program promoted a coordinated research project (CRP) entitled "Mosquito handling, transport, release and male trapping methods" to enhance the success of SIT. This article summarizes the existing explorations that are critical to the handling and transporting of male mosquitoes, offers an overview of detailed steps in SIT and discusses new emerging methods for mosquito releases, covering most processes of SIT.

8.
Nanotechnology ; 33(25)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35290961

ABSTRACT

Due to the wide spectral absorption and ultrafast electron dynamical response under optical excitation, topological insulator (TI) was proposed to have appealing application in next-generation photonic and optoelectronic devices. Whereas, the bandgap-free speciality of Dirac surface states usually leads to a quick relaxation of photoexcited carriers, making the transient excitons difficult to manipulate in isolated TIs. Growth of TI Bi2Te3/Ge heterostructures can promote the specific lifetime and quantity of long-lived excitons, offering the possibility of designing original near-infrared optoelectronic devices, however, the construction of TI Bi2Te3/Ge heterostructures has yet to be investigated. Herein, the high-quality Bi2Te3/Ge heterojunction with clear interface was prepared by physical vapor deposition strategy. A significant photoluminescence quenching behaviour was observed by experiments, which was attributed to the spontaneous excitation transfer of electrons at heterointerface via theoretical analysis. Then, a self-powered heterostructure photodetector was fabricated, which demonstrated a maximal detectivity of 1.3 × 1011Jones, an optical responsivity of 0.97 A W-1, and ultrafast photoresponse speed (12.1µs) under 1064 nm light illumination. This study offers a fundamental understanding of the spontaneous interfacial exciton transfer of TI-based heterostructures, and the as-fabricated photodetectors with excellent performance provided an important step to meet the increasing demand for novel optoelectronic applications in the future.

9.
J Phys Condens Matter ; 34(7)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34768243

ABSTRACT

Inspired by the new progress in the research field of two-dimensional valleytronics materials, we propose a new class of transition metal halides, i.e. H-ZrX2(X = Cl, Br, I), and investigated their valleytronics properties under the first-principles calculations. It harbors the spin-valley coupling at K and K' points in the top of valence band, in which the valley spin splitting of ZrI2can reach up to 115 meV. By carrying out the strain engineering, the valley spin splitting and Berry curvature can be effectively tuned. The long-sought valley polarization reaches up to 108 meV by doping Cr atom, which corresponds to the large Zeeman magnetic field of 778 T. Furthermore, the valley polarization in ZrX2can be lineally adjusted or flipped by manipulating the magnetization orientation of the doped magnetic atoms. All the results demonstrate the well-founded application prospects of single-layer ZrX2, which can be considered as great candidate for the development of valleytronics and spintronics.

10.
Micromachines (Basel) ; 12(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202878

ABSTRACT

The electronic structure and spin polarization properties of monolayer GaP3 induced by transition metal (TM) doping were investigated through a first-principles calculation based on density functional theory. The calculation results show that all the doped systems perform spin polarization properties, and the Fe-doped system shows the greatest spin polarization property with the biggest magnetic moment. Based on the analysis from the projected density of states, it was found that the new spin electronic states originated from the p-d orbital couplings between TM atoms and GaP3 lead to spin polarization. The spin polarization results were verified by calculating the spin density distributions and the charge transfer. It is effective to introduce the spin polarization in monolayer GaP3 by doping TM atoms, and our work provides theoretical calculation supports for the applications of triphosphide in spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...